AB=中,|AB+AD|=|AB-AD|,则有()中,|AB-BC|的值为()点,则BA-BC-OA+OD+DA=.326.2《平面向量的运算—加法减法》课后训练一、选择题1.在如图四边形ABCD中,设→→a,AD=b→,BC=c→,则DC等于()A.a-b+cB.b-(a+c)C.a+b+cD.b-a+c-→→→2.化简OP-QP+PS+SP的结果等于()-→→→A.QPB.OQC.SPD.SQ3.若O,E,F是不共线的任意三点,则以下各式中成立的是()-→→→→→A.EF=OF+OEB.EF=OF-OE-→→→→→C.EF=-OF+OED.EF=-OF-OE4.在平行四边形ABCD-→→→-→→A.AD=0B.AB=0或AD=0C.ABCD是矩形D.ABCD是菱形-→→5.若|AB|=5,|AC|=8,则|BC|的取值范围是()A.[3,8]B.(3,8)C.[3,13]D.(3,13)6.边长为1的正三角形ABC→→A.1B.2C.二、填空题D.37.如图所示,在梯形ABCD中,AD∥BC,AC与BD交于O-→→-→-→→→8.化简(AB-CD)-(AC-BD)的结果是.9.如图所示,已知O到平行四边形的三个顶点A、B、C的向量分别为a,b,c(用a,b,c表示).→,则OD=10.已知非零向量a,b满足|a|=7+1,|b|=7-1,且|a-b|=4,则|a+b|=.AB=中,AB=,AD=表示向量AC和DB三、解答题11.如图所示,O是平行四边形ABCD的对角线AC、BD的交点,设→→a,DA=b→,OC=c,求证:b+c-a→=OA.12.如图所示,已知正方形ABCD-a→b→c,试作出下列向量并的边长等于1,AB=分别求出其长度,(1)a+b+c;(2)a-b+c.,BC=,AC=13.在平行四边形ABCD-a→b,先用a,b-→,并回答:当a,b分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?14.如图所示,O为△ABC的外心,H-→→→.为垂心,求证:OH=OA+OB+OC|BC|[ABADABAD|ABAD||ABAD||ACAB|参考答案:1.A2.B3.B4.C→+→与→-→分别是平行四边形ABCD的两条对角线,且→+→=→-→,∴ABCD是矩形.]5.C[∵→=→-→且|BC||ACAB|-→→→→→||AC|-|AB||≤|AC-AB|≤|AC|+|AB|.∴3≤→-→≤13.∴3≤→≤13.]6.D[如图所示,延长CB到点D,使BD=1,连结AD,则→-→=→+→=→→→ABBCABCBAB+BD=AD.在△ABD中,AB=BD=1,∠ABD=120°,易求AD=3,∴→→|AB-BC|=3.]→7.CA8.0解析方法一→-→-→-→(AB=→→→→CD)(ACBD)AB-CD-AC+BD=→→→→AB+DC+CA+BD=→→→→(AB+BD)+(DC+CA)=→→AD+DA=0.方法二→→→→(AB-CD)-(AC-BD)=→→→→AB-CD-AC+BD=→→→→(AB-AC)+(DC-DB)ACOAOA.OAOA.ABBCAC=→→CB+BC=0.9.a-b+c解析→-→→→→→→OD=OA+AD=OA+BC=OA+OC-OB=a+c-b=a-b+c.10.4解析如图所示.设→→→OA=a,OB=b,则|BA|=|a-b|.以OA与OB为邻边作平行四边形OACB,则→222|OC|=|a+b|.由于(7+1)+(7-1)=4.故→2→2→2|OA|+|OB|=|BA|,所以△OAB是∠AOB为90°的直角三角形,从而OA⊥OB,所以▱OACB是矩形,根据矩形的对角线相等有-=→=4,即|a+b|=4.|OC||BA|11.证明方法一∵b+c=→+→=→+→=→,-→→→DAOCOCCBOBOA+a=OA+AB=OB,∴b+c=→+a,即b+c-a=→方法二∵c-a=→-→=→-→=→,OCABOCDCOD-→→→OD=OA+AD=OA-b,∴c-a=→-b,即b+c-a=→12.解(1)由已知得a+b=→+→=→,→AC=c,∴延长AC到E,使→→|CE|=|AC|.则a+b+c=→,且→=22.AE|AE|∴|a+b+c|=22.(2)作→=→,连接CF,BFAC则→→→DB+BF=DF,而→→→→DB=AB-AD=a-BC=a-b,∴a-b+c=→+→=→且→=2.DBBFDF|DF|∴|a-b+c|=2.13.解由向量加法的平行四边形法则,得→=a+b,-→→DB=AB-AD=a-b.又则有:当a,b满足|a+b|=|a-b|时,平行四边形两条对角线相等,四边形ABCD为矩形;当a,b满足|a|=|b|时,平行四边形的两条邻边相等,四边形ABCD为菱形;当a,b满足|a+b|=|a-b|且|a|=|b|时,四边形ABCD为正方形.14.证明作直径BD,连接DA、DC,则→=-→,OBODDA⊥AB,AH⊥BC,CH⊥AB,CD⊥BC.∴CH∥DA,AH∥DC,故四边形AHCD是平行四边形.∴→→AH=DC,又→→→→→DC=OC-OD=OC+OB,∴→→→→→→→→OH=OA+AH=OA+DC=OA+OB+OC.